google-harvard-brain-map-human-connectome

por Jason Dorrier

google-harvard-brain-map-human-connectome

El martes pasado, equipos de Google y Harvard publicaron un intrincado mapa de cada célula y conexión en un milímetro cúbico del cerebro humano.

La región mapeada abarca las diversas capas y tipos de células de la corteza cerebral, una región del tejido cerebral asociada con la cognición de nivel superior, como el pensamiento, la planificación y el lenguaje. Según Google , es el mapa cerebral más grande con este nivel de detalle hasta la fecha, y está disponible gratuitamente para los científicos (y el resto de nosotros) en línea. (De verdad. Ve aquí. Da un paseo).

“El cerebro humano es una red inmensamente compleja de células cerebrales que es responsable de todo el comportamiento humano, pero hasta ahora, no hemos podido mapear completamente estas conexiones ni siquiera dentro de una pequeña región del cerebro”, dijo el Dr. Alexander Shapson. -Coe, becario postdoctoral en el Lichtman Lab de Harvard y autor principal de un artículo preimpreso sobre el trabajo .

Para hacer el mapa, los equipos cortaron el tejido donado en 5.300 secciones, cada una de 30 nanómetros de grosor, y las fotografiaron con un microscopio electrónico de barrido a una resolución de 4 nanómetros. Las 225 millones de imágenes resultantes se alinearon y cosieron computacionalmente en una representación digital en 3D de la región. Los algoritmos de aprendizaje automático segmentaron células y clasificaron sinapsis, axones, dendritas, células y otras estructuras, y los humanos verificaron su trabajo.

El año pasado, Google y el Campus de Investigación Janelia del Instituto Médico Howard Hughes llegaron a los titulares cuando mapearon de manera similar una parte del cerebro de una mosca de la fruta. Ese mapa, en ese momento el más grande hasta ahora , cubría unas 25.000 neuronas y 20 millones de sinapsis. Además de apuntar al cerebro humano, en sí mismo notable, el nuevo mapa incluye decenas de miles de neuronas y 130 millones de sinapsis. Ocupa 1,4 petabytes de espacio en disco.

En comparación, más de tres décadas de imágenes satelitales de la Tierra del programa Landsat de la NASA requieren 1.3 petabytes de almacenamiento. Las colecciones de imágenes cerebrales en las escalas más pequeñas son como “un mundo en un grano de arena”, dijo Clay Reid del Instituto Allen a Nature, citando a William Blake en referencia a un mapa anterior del cerebro del ratón.

Todo eso, sin embargo, es solo una millonésima parte del cerebro humano. Es decir, todavía faltan años para un mapa igualmente detallado de todo el asunto. Aún así, el trabajo muestra qué tan rápido se mueve el campo. Un mapa de esta escala y detalle hubiera sido inimaginable hace unas décadas.

Cómo mapear un cerebro

El estudio de los circuitos celulares del cerebro se conoce como conectómica.

Obtener el conectoma humano, o el diagrama de cableado de todo el cerebro, es un disparate similar al genoma humano. Y al igual que el genoma humano, al principio parecía una hazaña imposible.

Los únicos conectomas completos son para criaturas simples: el gusano nematodo ( C. elegans ) y la larva de una criatura marina llamada C. intestinalis . Hay una muy buena razón para ello. Hasta hace poco, el proceso de mapeo consumía mucho tiempo y era costoso.

Los investigadores que mapearon C. elegans en la década de 1980 utilizaron una cámara de película conectada a un microscopio electrónico para obtener imágenes de cortes del gusano, luego reconstruyeron las neuronas y las conexiones sinápticas a mano , como un rompecabezas tridimensional extremadamente difícil. C. elegans tiene solo 302 neuronas y aproximadamente 7,000 sinapsis, pero el borrador de su conectoma tomó 15 años , y un borrador final tomó otros 20. Claramente, este enfoque no escalaría.

¿Qué ha cambiado? En resumen, automatización.

En estos días, las imágenes en sí mismas son, por supuesto, digitales. Un proceso conocido como fresado con haz de iones enfocado reduce cada rebanada de tejido unos pocos nanómetros a la vez. Después de que se vaporiza una capa, un microscopio electrónico toma imágenes de la capa recién expuesta. Luego, el haz de iones corta la capa de la imagen y la siguiente, hasta que todo lo que queda del corte de tejido es una copia digital de resolución nanométrica. Está muy lejos de los días de Kodachrome.

Pero quizás la mejora más dramática es lo que sucede después de que los científicos completan ese montón de imágenes.

En lugar de ensamblarlos a mano, los algoritmos se hacen cargo. Su primer trabajo es ordenar los cortes con imágenes. Luego hacen algo imposible hasta la última década. Alinean las imágenes exactamente, trazando el camino de las células y las sinapsis entre ellas y, por lo tanto, construyen un modelo 3D. Los seres humanos todavía revisan los resultados, pero ya no hacen lo más difícil. (Incluso la corrección de pruebas se puede refinar. El renombrado neurocientífico y defensor de la conectómica Sebastian Seung, por ejemplo, creó un juego llamado Eyewire , donde miles de voluntarios revisan las estructuras ).

“Es realmente hermoso de ver”, dijo a Nature  en 2019 Jeff Lichtman de Harvard, cuyo laboratorio colaboró ​​con Google en el nuevo mapa. Los programas pueden rastrear neuronas más rápido de lo que el equipo puede producir datos de imágenes, dijo. “No podemos seguirles el ritmo. Ese es un gran lugar para estar “.

Pero por qué…?

En una charla TED de 2010 , Seung le dijo a la audiencia que eres tu conectoma. Reconstruye las conexiones y reconstruye la mente misma: recuerdos, experiencia y personalidad.

Pero la conectómica no ha estado libre de controversias a lo largo de los años .

No todo el mundo cree que el mapeo del conectoma a este nivel de detalle sea necesario para una comprensión profunda del cerebro. Y, especialmente en el pasado anterior y más artesanal del campo, a los investigadores les preocupaba que la escala de recursos requeridos simplemente no arrojara resultados comparativamente valiosos (u oportunos).

“No necesito conocer los detalles precisos del cableado de cada célula y cada sinapsis en cada uno de esos cerebros”, dijo el nuevo científico Anthony Movshon en 2019 . “Lo que necesito saber, en cambio, son los principios organizacionales que los unen”. Estos, cree Movshon, probablemente se pueden inferir de observaciones a resoluciones más bajas.

Además, una instantánea estática de las conexiones físicas del cerebro no explica necesariamente cómo se utilizan esas conexiones en la práctica.

“Un conectoma es necesario, pero no suficiente”, han dicho algunos científicos a lo largo de los años. De hecho, puede ser en la combinación de mapas cerebrales, incluidos mapas funcionales de nivel superior que rastrean las señales que fluyen a través de las redes neuronales en respuesta a los estímulos, que el funcionamiento interno del cerebro se ilumine con el más nítido detalle.

Aún así, el conectoma de C. elegans ha demostrado ser un componente fundamental para la neurociencia a lo largo de los años. Y la velocidad cada vez mayor del mapeo está comenzando a sugerir objetivos que alguna vez parecieron poco prácticos, en realidad pueden estar al alcance en las próximas décadas.

¿Ya llegamos?

Seung ha dicho que cuando comenzó, estimó que le tomaría un millón de años a una persona rastrear manualmente todas las conexiones en un milímetro cúbico de corteza humana. El cerebro entero, infirió además, tomaría el orden de un billón de años.

Es por eso que la automatización y los algoritmos han sido tan cruciales para el campo.

Gerry Rubin de Janelia le dijo a  Stat que él y su equipo han supervisado un aumento de 1000 veces en la velocidad de mapeo desde que comenzaron a trabajar en el conectoma de la mosca de la fruta en 2008. El conectoma completo, cuya primera parte se completó el año pasado, podría llegar en 2022.

Otros grupos están trabajando en otros animales, como los pulpos, y dicen que comparar cómo se conectan las diferentes formas de inteligencia puede resultar un terreno particularmente rico para el descubrimiento.

El conectoma completo de un ratón, un proyecto que ya está en marcha, puede seguir a la mosca de la fruta a finales de la década. Rubin estima que pasar del ratón al ser humano necesitaría otro millón de veces más en la velocidad del mapeo. Pero señala el aumento de un billón de veces en la velocidad de secuenciación del ADN desde 1973 para demostrar que mejoras técnicas tan dramáticas no tienen precedentes.

El genoma también puede ser una comparación adecuada de otra manera. Incluso después de secuenciar el primer genoma humano, se han necesitado muchos años para escalar la genómica hasta el punto en que podamos realizar más plenamente su potencial. Quizás ocurra lo mismo con la conectómica.

Incluso cuando la tecnología abre nuevas puertas, puede llevar tiempo comprender y hacer uso de todo lo que tiene para ofrecer.

“Creo que la gente estaba impaciente por lo que [los conectomas] proporcionarían”, dijo Joshua Vogelstein, cofundador del Open Connectome Project, The Verge el año pasado . “La cantidad de tiempo que transcurre entre la siembra de una buena tecnología y la práctica científica real utilizando esa tecnología suele ser de aproximadamente 15 años. Ahora han pasado 15 años y podemos empezar a hacer ciencia “.

Los defensores esperan que los mapas cerebrales proporcionen nuevos conocimientos sobre cómo funciona el cerebro, desde el pensamiento hasta las emociones y la memoria, y cómo diagnosticar y tratar mejor los trastornos cerebrales.

“Este avance abre la posibilidad de comparar redes de cerebros sanos y enfermos, para identificar los cambios en la red que se cree que causan enfermedades mentales y otros trastornos neurológicos”, dijo Shapson-Coe.

Otros, entre ellos Google sin duda, esperan obtener información que pueda conducir a una informática más eficiente (el cerebro es asombroso en este sentido) y a una inteligencia artificial más poderosa.

No se sabe exactamente qué encontrarán los científicos a medida que, neurona por sinapsis, mapeen el funcionamiento interno de nuestras mentes, pero parece que esperan algunos grandes descubrimientos.

Actualización (9/6/2021): Se agregaron citas sobre la importancia del trabajo de Alexander Shapson-Coe, un becario postdoctoral en el Instituto Lichtman de Harvard y autor principal de un artículo que describe el estudio.

Crédito de la imagen: Google / Harvard

Fuente: https://singularityhub.com/2021/06/06/google-and-harvard-unveil-the-largest-high-resolution-map-of-the-brain-yet/

Deja una respuesta